SAGBI and SAGBI-Gröbner Bases over Principal Ideal Domains

نویسندگان

  • William W. Adams
  • Serkan Hosten
  • Philippe Loustaunau
  • J. Lyn Miller
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SAGBI Bases Under Composition

Our interest in the subject of this paper is inspired by Hong (1998), where Hoon Hong addresses the problem of the behavior of Gröbner bases under composition of polynomials. More precisely, let Θ be a set of polynomials, as many as the variables in our polynomial ring. The question then is under which conditions on these polynomials it is true that for an arbitrary Gröbner basis G (with respec...

متن کامل

Ideal and Subalgebra Coefficients

For an ideal or K-subalgebra E of K[X1, . . . , Xn], consider subfields k ⊂ K, where E is generated – as ideal or K-subalgebra – by polynomials in k[X1, . . . , Xn]. It is a standard result for ideals that there is a smallest such k. We give an algorithm to find it. We also prove that there is a smallest such k for K-subalgebras. The ideal results use reduced Gröbner bases. For the subalgebra r...

متن کامل

Canonical Bases for Subalgebras on two Generators in the Univariate Polynomial Ring

In this paper we examine subalgebras on two generators in the univariate polynomial ring. A set, S, of polynomials in a subalgebra of a polynomial ring is called a canonical basis (also referred to as SAGBI basis) for the subalgebra if all lead monomials in the subalgebra are products of lead monomials of polynomials in S. In this paper we prove that a pair of polynomials {f, g} is a canonical ...

متن کامل

Subalgebra Analogue to Standard Basis for Ideal

The theory of “subalgebra basis” analogous to standard basis (the generalization of Gröbner bases to monomial ordering which are not necessarily well ordering [1].) for ideals in polynomial rings over a field is developed. We call these bases “SASBI Basis” for “Subalgebra Analogue to Standard Basis for Ideals”. The case of global orderings, here they are called “SAGBI Basis” for “Subalgebra Ana...

متن کامل

On the (De)homogenization of Sagbi Bases

In this paper we study the relation between nonhomogeneous and homogeneous Sagbi bases. As a consequence, we present a general principle of computing Sagbi bases of a subalgebra and its homogenized subalgebra, which is based on passing over to homogenized generators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 27  شماره 

صفحات  -

تاریخ انتشار 1999